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Abstract

This paper proposes rigid elements for a specific simplified model of the in-plane behaviour of masonry walls made

of regular textures. The elements are plane, quadrilateral and connected by two normal springs and one shear spring on

each side. The mechanical characteristics of these connections are defined in consideration of the texture effects arising

due to the mechanical degradation of mortar. The present approach has proved effective when transferring the essential

texture information from micro-scale to macro-scale. In particular, the ‘‘local rotation’’ of the blocks is obtained by

assigning different stiffness to the shear springs, according to their orientation, while the in-plane bending stiffness can

be reproduced by properly disposing the two normal springs. Depending on the geometry of the textures, these aspects

are significant in case of large differences in the elastic modulus of the constituents, as is the case of masonry walls

subjected to heavy seismic loading. Numerical simulations have proved that it is possible to deal with these aspects with

a very reduced computational effort which is promising for non-linear dynamical analyses applications.

� 2004 Elsevier Ltd. All rights reserved.
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1. Introduction

When studying the response of buildings subjected to earthquakes, it is necessary to describe the

dynamical response of large portions of structures with respect to the effects of a number of varying

parameters. As a consequence, specific computational models are required; on the one hand these models

should be simplified enough to allow parametric full dynamical analyses, on the other hand they should
also account for the peculiar behaviour of masonry material under loading causing heavy mechanical

degradation. Moreover, when dealing with structural intervention on ancient masonry monuments the

presence of complex different textures must often be considered, e.g. Fig. 1. The present study focuses on

the numerical approximation of the in-plane behaviour of the two idealized composite ‘‘masonry-like’’

textures shown in Fig. 2. The geometry of a standard Italian brick has been adopted for the rectangular
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Fig. 1. Partial section of an arch of the nave of an ancient cathedral, Italy.
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Fig. 2. Scheme of two masonry-like textures; a common rigid element discretization is shown in the centre.
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block texture: 2l� 2h ¼ 25 � 5:5 cm2, whereas for square blocks the side is assumed to be 2l ¼ 12 cm. The

thickness of the mortar joints is t ¼ 1 cm. The vertical head-joints, which are interrupted by bricks, are

generally of poor quality and weaker than the horizontal continuous bed-joints. For the sake of clarity

single leaf masonry has been considered as a first approach.

Dealing with composites, discrete models with a reduced number of degrees of freedom can be obtained

by adopting a formulation in which the mechanical characteristics of heterogeneous materials are averaged

by means of homogenization towards an equivalent elastic medium (Anthoine, 1995; Michel et al., 1999;

Pande et al., 1989; Zucchini and Lourenc�o, 2002). Unfortunately, a lot of information about micro-
structure tends to get lost in a similar process, while there are, however, cases where the relevance of the

micro-structure effects should not be completely neglected, depending on global geometry, texture, the size

of the blocks with respect to the size of the structure, and the different stiffness of the material components.

In order to retain some of the micro-structure information in the passage from micro-scale to macro-scale,
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it is possible to homogenize towards a generalized continuum. As an example, finite element models that

adopt a Cosserat continuum have been proposed when using rigid blocks, or in case of materials which

show strain softening and the localization of deformation (Bouyge et al., 2001; Masiani et al., 1995;

M€uhlhaus, 1989; Sulem and M€uhlhaus, 1997; van der Sluis et al., 1999; Trovalusci and Masiani, 1999).
Unfortunately, applying such refined theories to simplified computational models still causes some trouble,

because of the difficulty in defining a clear and simple procedure for assigning the elastic–plastic parameters

and the characteristic length.

In the field of dynamical analysis, it is well known that rigid element models are powerful and effective,

as they require very few degrees of freedom to approximate the fundamental modes of vibration (Kawai,

1978; Toy and Yoshida, 1991). Adopting a proper constitutive relation, this approach has been successfully

applied to the out-of-plane dynamical analysis of masonry walls characterized by non-linearity and

mechanical degradation of the material (Casolo, 1999, 2000). The present paper proposes the application to
the in-plane analysis of structural elements for which texture effects are significant, by adopting quadri-

lateral elements which are on each side connected by three elastic devices that may be imagined as simple

linear springs. The adoption of this type of device is useful in view of future developments, since it allows

separate phenomenological descriptions for the hysteresis behaviour of the axial and shear connections that

can be related by means of a simple Mohr-Coulomb criterion. By imposing the strain energy equivalence,

the mechanical characteristics of the model are defined by means of a specific identification procedure with

the objective of transferring the ‘‘memory’’ of the texture to the element�s meso-scale by exploiting the

peculiar rigid element kinematics.
2. Model discretization

The in-plane kinematics of the structure is defined by its mid-plane X � R2, and a global Cartesian

coordinate frame fO; x; yg is fixed with the x-axis parallel to the horizontal bed-joints. The domain X is then

partitioned into m quadrilateral elements xi so that no vertex of one quadrilateral lies on the edge of

another quadrilateral. A local reference frame foi; ni; gig is placed in each element barycentre oi, where ni-

axis is initially parallel to the global x-axis as shown in Fig. 2. The deformed configuration of the discrete

model is described as a function of the displacement of these local reference frames fixed to the moving
elements. Three kinematic variables, the two translations ui, vi and the rotation angle wi, are associated to

each element as shown in Fig. 3, and the whole kinematic configuration is described by the 3m Lagrangian

coordinates assembled in the vector fug:
Fi
fugT ¼ fu1; v1;w1; u2; v2;w2; . . . ; um; vm;wmg ð1Þ
The external load, including inertial forces, is applied considering the undeformed geometry. For each

element xi, it is condensed into three resultants: the horizontal and the vertical forces pi and qi, applied to

the barycentre oi, and the couple li. The m triplets fpi; qi; lig are assembled into a vector of generalized
external load fpg, conjugated with vector fug, as follows:
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g. 3. Displaced couple of rigid elements with evidence of the notation adopted for the displacements and external forces.
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Fig. 4. Couple of rigid elements xi and xj of irregular shape with evidence of the tributary volumes V R and V P and the notation

adopted for the elastic devices.
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fpgT ¼ fp1; q1; l1; p2; q2; l2; . . . ; pm; qm; lmg ð2Þ
The elastic devices that connect each couple of elements are placed in correspondence of three con-

nection points named P , Q and R, as shown in Fig. 4, on the left, where the shaded areas indicate the
volumes of pertinence VP , VR and VQ ¼ VP þ VR, associated to each of these points. A shear elastic con-

nection is placed in the mid-point Q, while two normal elastic connections are placed at the external points P
and R, at the distance b from Q. The elastic force in each device is proportional to a mean strain measure

associated with the corresponding connection point: a shear strain eQ is associated with point Q, while axial

strains eP and eR, are associated with points P and R. The corresponding local generalized stiffnesses are

named kP , kQ, kR. Given the distances di and dj of the two baricentres from point Q, and the distances hi and

hj of the two baricentres from the connection side, as shown in Fig. 4, on the right, and assuming small

displacements, the following relation gives the three strain measures between a couple of adjoining elements
xi and xj, as a function of the Lagrangian coordinates fug:
eP

eQ

eR

8<
:

9=
; ¼ 	 1

hi þ hj

cos a sin a ½sinða 	 hiÞdi þ b�
	 sin a cos a ½cosða 	 hiÞdi�
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The vector of generalized strains feg is assembled in order to contain all the mean strain measures as

follows:
fegT ¼ eP1 ; e
Q
1 ; e

R
1 ; e

P
2 ; e

Q
2 ; e

R
2 ; . . . ; e

P
r ; e

Q
r ; e

R
r

� �
ð4Þ
being r the number of sides that connect the elements of the whole discrete model. Thus, the linearity of (3),

permits to express the strain-displacement relations by considering a 3r � 3m matrix ½B�:

feg ¼ ½B�fug ð5Þ
3. Constitutive relations

3.1. Direct numerical identification

The mechanical characteristics of the connecting devices are assigned with the criterion of approximating
the strain energy of the corresponding volume of pertinence by means of a direct numerical identification

(Anthoine, 1995; Bouyge et al., 2001; Michel et al., 1999). The five loading tests shown in Fig. 5 are per-



Fig. 5. Sketch of the five loading tests performed on a periodic cell.
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formed adopting a plane stress finite element model of the periodic cell as reference, and assigning periodic

boundary conditions for axial and shear loading, and displacement boundary conditions for in-plane

bending. The corresponding average strain energy densities evaluated by finite elements are named

respectively UA
x , UA

y , US , UF
x and UF

y . For the sake of clarity, the method is presented with reference to the

case of a regular mesh of square rigid elements aligned with the principal axes of the material, whose size
corresponds to the side 2e of a square periodic cell, as shown in Fig. 2.

The axial behaviour is characterized by equal actions in the two normal connecting devices of the

common side as shown in Fig. 6. Noting that the present model cannot account for the Poisson coupling

effect, the choice of considering free normal displacements on the boundary sides without load has been

assumed in the present case. The generalized axial strains are ex ¼ u=e and ey ¼ v=e, while the measured

strain energy densities, averaged in the volumes of pertinence, are UA
x and UA

y . Thus, the generalized axial

stiffnesses per unit volume to be attributed to the normal connecting devices, kA
x ¼ kP

x ¼ kR
x and

kA
y ¼ kP

y ¼ kR
y , are calculated as follows:
kA
x ¼ 2UA

x

e2
x

; kA
y ¼

2UA
y

e2
y

ð6Þ
The shear behaviour is characterized by the presence of equal forces in the shear connecting devices of
the four sides of each square element. Finite element analyses carried out on the two idealized ‘‘masonry-

like’’ textures have revealed a significant difference in the deformation patterns, as shown, for example, in

Fig. 7. In fact, rectangular blocks tend to rotate so as to align the long side with the horizontal joints,

whereas square blocks tend to translate without significant rotation. In detail, the deformation of rect-

angular blocks appears as a mix of shear and bending, plus a local rigid rotation, as reported in Fig. 8 which
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Fig. 6. Couple of rigid elements subjected to horizontal and vertical axial loading.



Fig. 7. Enlarged view of the deformed finite element mesh of a periodic cell of the two textures subjected to shear loading.

Fig. 8. Deformed shapes of a block with different ratios of elastic moduli Eb=Eh.
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shows the enlarged images of the central brick in correspondence with three different ratios of the elastic

modulus of the bricks Eb with respect to the elastic modulus of the horizontal and vertical mortar joints,

respectively Eh and Ev (in this case Eh=Ev ¼ 10). We can observe that the brick responds with a pure shear

deformation for Eb=Eh ¼ 1, with a mix of shear and bending for Eb=Eh ¼ 10, while rigid rotation prevails
for Eb=Eh ¼ 10000. This very high ratio has been considered in order to investigate the condition of plastic

loading when mortar degrades. The rigid rotation of the blocks can be considered as a characteristic local

rotation of this masonry-like texture, and its importance eventually increases with the level of heterogeneity.

Fig. 9 shows the shear case with reference to an assemblage of four rigid elements, and the shaded area

corresponds to half of the volume of pertinence of the four shear connecting devices. The average sym-

metric shear strain is es ¼ u=e ¼ v=e, while the local rotation is reproduced by exploiting the rotation degree

of freedom of the rigid elements. In particular, by adopting square rigid elements whose size is 2e, the local

rigid rotation of the blocks can be directly assigned as the rotation w of the rigid elements. The proper
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Fig. 9. Assemblage of four rigid elements subjected to shear loading.
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measure of this local rotation is in some way a compromise since it tends to be affected by shear and

bending deformation. At the present stage, the following formula has been chosen, based on the dis-

placements of the points A, B, C and D of the brick shown in Fig. 8:
w ¼
uC
y 	 uA

y

4l
þ uD

x 	 uB
x

4h
ð7Þ
The generalized shear strains for vertical and horizontal connecting devices are:
ev ¼ es 	 w ¼ esð1 	 qÞ
eh ¼ es þ w ¼ esð1 þ qÞ

ð8Þ
being q ¼ w=es the local rigid rotation ratio. The equilibrium of the shear stresses implies the following

relation of stiffnesses of the shear connecting devices of the vertical and of the horizontal sides:
kQ
h

kQ
v

¼ ev

eh

¼ 1 	 q
1 þ q

ð9Þ
A generalized symmetric shear stiffness kS can thus be defined, such as:
ð1 þ qÞkS ¼ kQ
v

ð1 	 qÞkS ¼ kQ
h

ð10Þ
Given the average elastic energy density US stored in the volume of pertinence, as measured by the finite

element model, kS is defined by the following equation:
kS ¼ US

ð1 	 q2Þe2
s

ð11Þ
Modelling the in-plane bending stiffness requires the estimation of the distances bx and by of the normal

elastic connections from the mid-point of each side. The scheme of the in-plane bending test is shown in

Fig. 10. After measuring the average elastic energy densities UF
x and UF

y from the finite element model, we
obtain:
bx ¼
bx

e
¼ 1

w

ffiffiffiffiffiffiffiffiffi
2UF

x

kA
x

s
; by ¼

by

e
¼ 1

w

ffiffiffiffiffiffiffiffiffi
2UF

y

kA
y

s
ð12Þ
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Fig. 10. Couple of rigid elements subjected to in-plane bending.
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The case of linear stress distribution along a common side of length 2e is simulated by placing the normal

connecting devices at b ¼ 1=
ffiffiffi
3

p
¼ 0:577, but in general the value of ratio b varies in order to approximate

different stress distribution along the periodic cell sides.

Finally, the generalized stiffnesses per unit volume of all the 3r elastic devices and their corresponding
volumes of pertinence are assembled in two diagonal matrices ½D� and ½V � as follows:
Fig. 1
½D� ¼ Diag kP
1 ; k

Q
1 ; k

R
1 ; k

P
2 ; k

Q
2 ; k

R
2 ; . . . ; k

P
r ; k

Q
r ; k

R
r

� �
ð13Þ

½V � ¼ Diag V P
1 ; V Q

1 ; V R
1 ; V

P
2 ; V Q

2 ; V R
2 ; . . . ; V

P
r ; V

Q
r ; V R

r

� �
ð14Þ
The three tests for which periodic boundary conditions are assigned are also the basis for defining the

elastic properties of a corresponding orthotropic Cauchy continuum for which the local rotation ratio q is

disregarded. It is worth noting that the generalized strain measures ex, ey and es defined for rigid elements

correspond to the overall strains of an equivalent homogeneous continuum, and thus the following simple

equivalence holds between the elastic moduli of the orthotropic Cauchy continuum and the generalized

stiffness assigned to the connecting devices, as a consequence of Eqs. (6) and (11): Young�s moduli Ex ¼ kA
x ,

Ey ¼ kA
y , and shear modulus 2G ¼ kS .

3.2. Size effects and orientation

In the case of square rigid elements whose size equals the size of the periodic cell then the rotation w of

rigid elements subjected to pure shear loading coincides with the local rotation measured on the composite

material. When the side of the rigid elements is larger than the base side of the blocks, a reduced angle

w
 < w is assigned following the idea that each single element must rotate in order to average the terraced
shape of the horizontal joints as shown in Fig. 11. This is done by defining a characteristic length 2f for

each connecting side as the square root of the area that corresponds to the volume of pertinence of the shear

connection. Then length 2f is compared with the block base length 2l, and the reduced ratio qH between the

rotation of the rigid elements and the symmetric shear deformation is assigned as follows:
qH ¼ ql=f if f > l
q otherwise

�
ð15Þ
being q ¼ w=es, as defined in Section 3.1.

Using algebra, it can be proved that the approximation of the in-plane bending moment given by Eq.

(12) can also be preserved in the case f > l by assigning bH, the distance of the normal connections,

according to the following equation:
bH ¼ bH

f
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

3
	 l2

3f 2
þ b2

f 2

s
ð16Þ
ψ∗

1. Example of different rotation angle w
 attributed to rigid elements of different size with respect to the periodic square cell.
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It is also necessary to specify how to assign the elastic parameters when the normal n of a connecting side

is inclined by an angle a with respect to the horizontal x-axis. Considering again square rigid elements, in

the case of a deformation map that consists of simple displacements of the element barycentre along the n
direction, as shown in Fig. 12 on the left, only the normal elastic connections are interested by a generalized

strain en. The corresponding strains in the material reference frame fO; x; yg are:
exðaÞ ¼ en cos2 a

eyðaÞ ¼ en sin2 a

esðaÞ ¼ en cos a sin a

ð17Þ
It is worth noting that the presence of the shear strain es in the material reference frame implies an angle of
local rotation wðaÞ, even if this rotation cannot exist in the inclined mesh:
wðaÞ ¼ qesðaÞ ¼ qen cos a sin a ð18Þ

Thus, the equivalence of the elastic energy leads to the following expression for the stiffness of the normal

connecting devices as a function of angle a:
kAðaÞ ¼ kA
x cos4 a þ kA

y sin4 a þ 2kSð1 	 q2Þ cos2 a sin2 a ð19Þ
In the case of a barycentre deformation map that corresponds to a simple shear strain et, as shown in Fig.
12 on the right, the corresponding strains in the material reference frame fO; x; yg are:
exðaÞ ¼ 	2et cos a sin a

eyðaÞ ¼ 2et cos a sin a

esðaÞ ¼ etðcos2 a 	 sin2 aÞ
ð20Þ
The consequent local rotation wðaÞ in the material reference frame is:
wðaÞ ¼ qetðcos2 a 	 sin2 aÞ ð21Þ

This local rotation can be attributed to the inclined mesh by assigning different stiffness to the shear

connecting devices in accordance with Eq. (9). The ratio between local rotation and symmetric shear in the

inclined configuration is:
qHðaÞ ¼ wðaÞ
et

¼ qðcos2 a 	 sin2 aÞ ð22Þ
Finally, the equivalence of the elastic energy leads to the following expression for the stiffness of the shear
connections as a function of the angle of inclination a:
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kSðaÞ ¼
2ðkA

x þ kA
y Þ cos2 a sin2 a þ kSð1 	 q2Þðcos2 a 	 sin2 aÞ2

1 	 qðcos2 a 	 sin2 aÞ
ð23Þ
Heuristically, the following simple relation has been assumed for bHðaÞ:
bHðaÞ ¼ bx cos2 a þ by sin2 a ð24Þ
4. Numerical application

4.1. Equations of the motion

The mass of each element mi and the polar moment of inertia around the barycentre ii, are assembled in

the following diagonal generalized mass matrix:
½M � ¼ Diag m1;m1; i1;m2;m2; i2; . . . ;mm;mm; im;f g ð25Þ

Recalling Eqs. (5), (13) and (14), the global generalized stiffness matrix ½K� is:
½K� ¼ ½B�T½D�½V �½B� ð26Þ

Thus, the system of equation of the motion of the discrete system is expressed as follows:
½M �f€ug þ ½K�fug ¼ fpg ð27Þ
4.2. Elastic parameters related with micro-structure

An extensive parametric study was performed on the textures shown in Fig. 2 in order to identify the

mechanical characteristics of the connection devices according to the procedure outlined in Section 3.1. The

Young modulus of the blocks was fixed to be Eb ¼ 10000 MPa, while the elastic moduli of the horizontal

and vertical mortar joints, respectively Eh and Ev, assumed different values. In particular, ratio Eb=Eh varied

in the range [1–100 000] while the weakness effect of the vertical joints (Dialer, 1991) was studied by
considering four different ratios Eh=Ev in the range [1–30]. Poisson�s ratio was fixed to be m ¼ 0:1 for both

materials. Very high Eb=Eh values were considered with the aim of investigating the behaviour during the

plastic phases of loading in particular.

Fig. 13 shows the trends of ratios q, bx andby , given by Eqs. (8) and (12), as a function of ratio Eb=Eh.

The difference in micro-structure behaviour between the two textures is noticeable, and it is worth noting

that the rectangular blocks manifest a local counterclockwise rotation w that approaches the average

symmetric shear strain es (i.e. q ! 1) for high Eb=Eh values, without being significantly influenced by the

Eh=Ev ratio. In fact, when mortar has very low stiffness, the elongated shape of the blocks in any case tends
to impose the geometric alignment with the bed joints. Square blocks, on the other hand, manifest small

values of local rotation that tend to increase clockwise for high Eh=Ev ratios, as a direct consequence of the

higher stiffness of the horizontal shear connections with respect to the vertical ones. In practice, with square

blocks the effect of the different mortar joint stiffness prevails, while the geometric alignment effect related

to the texture is not significant.

The orthotropy of micro-structure effects is evident when considering the in-plane bending stiffness as

expressed by parameters bx and by . Along the horizontal direction, the bending stiffness of the rectangular

block texture tends to increase at high Eb=Eh values, especially in case of high Eh=Ev ratio values, as
manifested by the fact that bx tends to become larger than 0.577. The behaviour of square block texture is

different since the bending stiffness along the horizontal direction does not significantly depend on the



Fig. 13. Trend of the elastic parameters as a function of different ratios Eb=Eh and Eh=Ev for the textures with rectangular blocks (left),

and square blocks (right).
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Eb=Eh ratio. For the present two textures, characterized by continuous horizontal mortar joints, the micro-

structure does not give additional bending stiffness along the vertical direction and parameter by always

remains centred around value 0.577.
The results of this linear-elastic identification can be put into relation with a numerical analysis that

considers the elastic–plastic behaviour of mortar. To do this, a plane stress finite element model was used

for analyses in which the bricks were linear elastic, while the mortar behaviour followed the linear Drucker–

Prager plasticity material model available within Abaqus code. In the examples shown in Fig. 14, the initial

Young�s moduli were assigned to be Eb ¼ Eh ¼ 10000 MPa, while the weakness effect of the vertical mortar

joints was investigated by considering the same four Eh=Ev ratios already mentioned. The yield surface was

non-circular in the deviatoric plane with a ratio of the flow stress in triaxial tension to the flow stress in

triaxial compression equal to K ¼ 0:78, and a non-associated flow was assumed with separate dilatation
(2�) and friction (30�) angles in the ‘‘meridional’’ stress plane (Hibbitt et al., 2002). First yield occurred at a

value of cohesion d ¼ 2 MPa, that corresponded to a yield stress in pure shear equal to

s ¼ 2Kd=ð
ffiffiffi
3

p
ð1 þ KÞÞ ¼ 1:01 MPa. The horizontal mortar joints material then hardened to d ¼ 2:2 MPa at

one percent strain, and again to d ¼ 2:4 MPa at ten percent strain. The strength ratio of the horizontal and

vertical mortar joints was the same as the stiffness ratio. Fig. 14 shows in particular the trends of ratio q as a

function of the average shear strain es during monotonic shear loading under periodic boundary conditions.

The graphs of the average shear stress ss show how the quality of the vertical mortar joints significantly

affects the global shear strength for the square block texture, while in the case of rectangular blocks the
micro-structure effect of the texture somehow tends to compensate the vertical joint weakness.

The evolution trend of the local rotation ratio q during an elastic–plastic loading can easily be modelled

with the present rigid elements by identifying suitable constitutive-laws for vertical and horizontal shear

connection devices, as shown in the two examples of Fig. 15. In particular, the behaviour of the rectangular

block texture is approximated by giving the vertical shear connection a strength and a post-elastic stiffness



Fig. 14. Local rotation and average shear stress as a function of mean shear strain using finite elements with a linear Drucker–Prager

plasticity material model for mortar.

Fig. 15. Examples of the evolution of local rotation ratio q as a consequence of different constitutive laws ðe 	 sÞ assigned to the

vertical and horizontal shear springs of rigid elements.
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higher than the horizontal connections. On the other hand, the behaviour of the square block texture is

approximated by assigning a substantially similar behaviour to the two shear connections.
4.3. Comparisons with finite elements

The performance of the present model is presented by comparing the results of a set of eigenvalue studies

carried out on simple square structures. Figs. 16 and 17, in particular, refer to the first eigen-solution

calculated by means of four numerical models: a composite finite element model that was assumed as

reference, a rigid element model with shear springs defined according to Eq. (9) and distances bx and by

defined according to Eq. (12) (‘‘full r.e.’’), a rigid element model with symmetric shear stiffness (q ¼ 0,

‘‘symm r.e.’’), and a finite element model that adopts an orthotropic homogeneous Cauchy material
(‘‘homogeneous f.e.’’). A fixed vertical left side was considered as a boundary condition, as it has more



Fig. 16. Comparison of the deformed shapes corresponding to the first eigenvalue for different composite structures 2 · 2 (top), 3· 3

(middle), 5· 5 (bottom), with rectangular and square block textures; Eb=Eh ¼ 100, Eh=Ev ¼ 10.
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evident micro-structure effects, and a ratio of about 1/100 was chosen among the number of degrees of

freedom of the two approaches as reported in Table 1. It must be noted that further refinements of the rigid

element meshes do not make sense in these cases because the element size already corresponds to that of the

periodic cell adopted for identification.

A qualitative confirmation of the capability of the present approach to catch the ‘‘memory’’ of different
textures is obtained by observing the rigid element deformed shapes of Fig. 16. In fact, the vertical con-

nection sides of the rigid elements that correspond to rectangular block textures show a marked terraced

disposition, while they are almost aligned when the elements correspond to the cases of square block

textures. Logically, this effect is less pronounced when the size of the blocks is small with respect to the

global size of the structure as evident in the 5 · 5 case.

The graphs of percentage errors Dx% in the computation of the first eigenvalue with respect to the

composite finite element model, as shown in Fig. 17, reveal that, for square block textures, the approxi-

mation is good and substantially insensitive to the adopted particular computational model. On the other
hand, in the case of rectangular block textures, the capability of dealing with micro-structure effects sig-

nificantly depends on the different discrete models. In particular the rigid element model with the con-

nection devices defined according to Eqs. (9) and (12) (‘‘full r.e.’’) has a good performance in the whole

range of Eb=Eh ratio, while the finite element model that adopts the orthotropic homogeneous Cauchy

material (‘‘homogeneous f.e.’’) shows a lack of rigidity for high Eb=Eh ratio values. An analogous

shortcoming is also manifested by rigid elements when adopting equal shear springs on different sides



Table 1

Comparison of the number of degrees of freedom of the finite element models and the rigid element model adopted for the eigenvalue

analysis

Composite finite elements Specific rigid elements Homogeneous finite elements

2· 2 1242 12 1250

3· 3 2726 27 1250

5· 5 7422 75 1250

Fig. 17. Evaluation errors of the first eigenvalue with reference to the finite element model of composite textures; Eh=Ev ¼ 10.

3638 S. Casolo / International Journal of Solids and Structures 41 (2004) 3625–3641
(‘‘symm r.e.’’). The comparison of the plots relating to the 2 · 2, 3 · 3 and 5 · 5 structures also highlights
that errors depend on the ratio between the size of rectangular blocks and the global size.

The main source of error of the present method is essentially related to the simple kinematics that assigns

only three degrees of freedom to each element. As a consequence, a good performance is expected when

analyzing simple structures loaded by inertial body forces that do not produce high strain gradients at the

macro-scale, as in the case of the eigenmode I. Figs. 18 and 19 show some other results to appreciate the

performance of the present approach when approximating more complex deformation patterns, and also

the consequences of employing elements whose size is larger than the periodic cell adopted for elastic

identification. In correspondence with the third eigenvalue, for example, Fig. 18 shows the comparison of
deformed shapes of 25, 9 and 4 rigid element meshes with respect to the 5· 5 composite structure, and it is

interesting to note the different local rotation exhibited by the elements depending on the fact that they are

approximating the rectangular or the square texture. From the error plots shown in Fig. 19 we see that the

level of approximation is sensitive to the refinement of the rigid element meshes. In particular the error

curves of 2· 2, 3 · 3, and 4 · 4 meshes converge toward the error curve of the 5 · 5 mesh that can be

considered a ‘‘target’’ since these elements have the same size of the adopted representative volume element.

In any case, it is noticeable that the proposed approach gives good results even with a very coarse mesh of 4

rigid elements in the whole range of Eb=Eh ratio. This fact confirms the effectiveness of Eqs. (15) and (16) in
dealing with micro-structure size effects.



Fig. 19. Error curves for the eigenvalue of modes I–III of the 5 · 5 structure adopting meshes of 25, 16, 9 and 4 rigid elements for

rectangular and square block textures; ratio Eh=Ev ¼ 10.

Fig. 18. Comparison of the deformed shapes corresponding to the third eigenvalue of the 5· 5 composite structure adopting meshes of

25, 9 and 4 rigid elements for rectangular (top) and square block textures (bottom).
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A final example for evaluating distortion effects is given by comparing the results obtained with the four
meshes shown in Fig. 20. The graphs with the error plots for the first eigenvalue confirm the good per-

formance of Eqs. (19), (23) and (24) in dealing with distortions. It must be noted that the approximation



Fig. 20. Meshes adopted for evaluating the effects of distortion (top). Error plots for the first eigenvalue of the ‘‘5 · 5’’ structure

adopting regular and distorted meshes A–C (bottom); ratio Eh=Ev ¼ 10.
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error always remains moderate and lower than in the case of regular mesh with orthotropic homogeneous

Cauchy material shown in Fig. 17.
5. Conclusions

The demand for a computational model that requires very few degrees of freedom to describe the global

dynamics of composite masonry-like structures is at the basis of the present approach. Focusing on a level

of detail larger than the size of the minimum periodic cell, a direct specific identification procedure has been
conceived in order to transfer essential texture information from the composite micro-scale to the rigid

element meso-scale. The innovative aspect of the present approach is treating heterogeneous composite

material as a structured continuum without involving homogenization towards a generalized Cosserat

continuum, and thus avoiding the related complexities in assigning elasticity and plasticity characteristics.

This is obtained by completely renouncing the concept of continuum and exploiting the intrinsic charac-

teristics of the kinematics of the rigid elements that can be viewed as a sort of ‘‘Cosserat discrete medium’’.

An extensive numerical investigation has proved that micro-structure effects become particularly rele-

vant for high ratios between the elastic moduli of the constituents, when texture plays an important role
giving additional resources of stiffness and strength. The present method has proved successful by assigning

to the rigid elements a ‘‘memory’’ of the original texture also when adopting very coarse meshes, and in any

case it shows a better performance compared to the adoption of a homogeneous orthotropic Cauchy

continuum. The present study is therefore promising in view of the implementation of the post-elastic

behaviour of the material.
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